Package index
-
ci.2x2.mean.bs() - Computes tests and confidence intervals of effects in a 2x2 between-subjects design for means
-
ci.2x2.mean.mixed() - Computes tests and confidence intervals of effects in a 2x2 mixed design for means
-
ci.2x2.mean.ws() - Computes tests and confidence intervals of effects in a 2x2 within-subjects design for means
-
ci.2x2.median.bs() - Computes tests and confidence intervals of effects in a 2x2 between-subjects design for medians
-
ci.2x2.median.mixed() - Computes confidence intervals in a 2x2 mixed design for medians
-
ci.2x2.median.ws() - Computes confidence intervals of effects in a 2x2 within-subjects design for medians
-
ci.2x2.prop.bs() - Computes tests and confidence intervals of effects in a 2x2 between- subjects design for proportions
-
ci.2x2.prop.mixed() - Computes tests and confidence intervals of effects in a 2x2 mixed design for proportions
-
ci.2x2.stdmean.bs() - Computes confidence intervals of standardized effects in a 2x2 between-subjects design
-
ci.2x2.stdmean.mixed() - Computes confidence intervals of standardized effects in a 2x2 mixed design
-
ci.2x2.stdmean.ws() - Computes confidence intervals of standardized effects in a 2x2 within-subjects design
-
ci.agree.3rater() - Computes confidence intervals for a 3-rater design with dichotomous ratings
-
ci.agree() - Confidence interval for a G-index of agreement
-
ci.agree2() - Confidence interval for G-index difference in a 2-group design
-
ci.bayes.cor() - Bayesian credible interval for a Pearson or partial correlation with a skeptical prior
-
ci.bayes.normal() - Bayesian credible interval for a normal prior distribution
-
ci.bayes.prop() - Bayesian credible interval for a proportion
-
ci.bayes.spcor() - Bayesian credible interval for a semipartial correlation with a skeptical prior
-
ci.biphi() - Confidence interval for a biserial-phi correlation
-
ci.bscor() - Confidence interval for a biserial correlation
-
ci.cod() - Confidence interval for a coefficient of dispersion
-
ci.condslope.log() - Confidence intervals for conditional (simple) slopes in a logistic model
-
ci.condslope() - Confidence intervals for conditional (simple) slopes in a linear model
-
ci.cor.dep() - Confidence interval for a difference in dependent Pearson correlations
-
ci.cor() - Confidence interval for a Pearson or partial correlation
-
ci.cor2.gen() - Confidence interval for a 2-group correlation difference
-
ci.cor2() - Confidence interval for a 2-group Pearson correlation difference
-
ci.cqv() - Confidence interval for a coefficient of quartile variation
-
ci.cramer() - Confidence interval for Cramer's V
-
ci.cronbach() - Confidence interval for a Cronbach reliability
-
ci.cronbach2() - Confidence interval for a difference in Cronbach reliabilities in a 2-group design
-
ci.cv() - Confidence interval for a coefficient of variation
-
ci.etasqr() - Confidence interval for eta-squared
-
ci.fisher() - Fisher confidence interval
-
ci.indirect() - Confidence interval for an indirect effect
-
ci.kappa() - Confidence interval for two kappa reliability coefficients
-
ci.lc.gen.bs() - Confidence interval for a linear contrast of parameters in a between-subjects design
-
ci.lc.glm() - Confidence interval for a linear contrast of general linear model parameters
-
ci.lc.mean.bs() - Confidence interval for a linear contrast of means in a between-subjects design
-
ci.lc.median.bs() - Confidence interval for a linear contrast of medians in a between-subjects design
-
ci.lc.prop.bs() - Confidence interval for a linear contrast of proportions in a between- subjects design
-
ci.lc.reg() - Confidence interval for a linear contrast of regression coefficients in multiple group regression model
-
ci.lc.stdmean.bs() - Confidence interval for a standardized linear contrast of means in a between-subjects design
-
ci.lc.stdmean.ws() - Confidence interval for a standardized linear contrast of means in a within-subjects design
-
ci.mad() - Confidence interval for a mean absolute deviation
-
ci.mann() - Confidence interval for a Mann-Whitney parameter
-
ci.mape() - Confidence interval for a mean absolute prediction error
-
ci.mean.fpc() - Confidence interval for a mean with a finite population correction
-
ci.mean.ps() - Confidence interval for a paired-samples mean difference
-
ci.mean() - Confidence interval for a mean
-
ci.mean2() - Confidence interval for a 2-group mean difference
-
ci.median.ps() - Confidence interval for a paired-samples median difference
-
ci.median() - Confidence interval for a median
-
ci.median2() - Confidence interval for a 2-group median difference
-
ci.oddsratio() - Confidence interval for an odds ratio
-
ci.pairs.mult() - Confidence intervals for pairwise proportion differences of a multinomial variable
-
ci.pairs.prop.bs() - Bonferroni confidence intervals for all pairwise proportion differences in a between-subjects design
-
ci.pbcor() - Confidence intervals for point-biserial correlations
-
ci.phi() - Confidence interval for a phi correlation
-
ci.poisson() - Confidence interval for a Poisson rate
-
ci.popsize() - Confidence interval for an unknown population size
-
ci.prop.fpc() - Confidence interval for a proportion with a finite population correction
-
ci.prop.inv() - Confidence interval for a proportion using inverse sampling
-
ci.prop.ps() - Confidence interval for a paired-samples proportion difference
-
ci.prop() - Confidence intervals for a proportion
-
ci.prop2.inv() - Confidence interval for a 2-group proportion difference using inverse sampling
-
ci.prop2() - Confidence interval for a 2-group proportion difference
-
ci.pv() - Confidence intervals for positive and negative predictive values with retrospective sampling
-
ci.random.anova() - Confidence intervals for parameters of one-way random effects ANOVA
-
ci.ratio.cod2() - Confidence interval for a ratio of dispersion coefficients in a 2-group design
-
ci.ratio.cv2() - Confidence interval for a ratio of coefficients of variation in a 2-group design
-
ci.ratio.mad.ps() - Confidence interval for a paired-samples MAD ratio
-
ci.ratio.mad2() - Confidence interval for a 2-group ratio of mean absolute deviations
-
ci.ratio.mape2() - Confidence interval for a ratio of mean absolute prediction errors in a 2-group design
-
ci.ratio.mean.ps() - Confidence interval for a paired-samples mean ratio
-
ci.ratio.mean2() - Confidence interval for a 2-group mean ratio
-
ci.ratio.median.ps() - Confidence interval for a paired-samples median ratio
-
ci.ratio.median2() - Confidence interval for a 2-group median ratio
-
ci.ratio.poisson2() - Confidence interval for a ratio of Poisson rates in a 2-group design
-
ci.ratio.prop.ps() - Confidence interval for a paired-samples proportion ratio
-
ci.ratio.prop2() - Confidence interval for a 2-group proportion ratio
-
ci.ratio.sd2() - Confidence interval for a 2-group ratio of standard deviations
-
ci.rel2() - Confidence interval for a 2-group reliability difference
-
ci.reliability() - Confidence interval for a reliability coefficient
-
ci.rsqr() - Confidence interval for squared multiple correlation
-
ci.sign() - Confidence interval for the parameter of the one-sample sign test
-
ci.slope.mean.bs() - Confidence interval for the slope of means in a one-factor experimental design with a quantitative between-subjects factor
-
ci.slope.median.bs() - Confidence interval for the slope of medians in a one-factor experimental design with a quantitative between-subjects factor
-
ci.slope.prop.bs() - Confidence interval for a slope of a proportion in a single-factor experimental design with a quantitative between-subjects factor
-
ci.spcor() - Confidence interval for a semipartial correlation
-
ci.spear() - Confidence interval for a Spearman correlation
-
ci.spear2() - Confidence interval for a 2-group Spearman correlation difference
-
ci.stdmean.ps() - Confidence intervals for a paired-samples standardized mean difference
-
ci.stdmean() - Confidence interval for a standardized mean
-
ci.stdmean.strat() - Confidence intervals for a 2-group standardized mean difference with stratified sampling
-
ci.stdmean2() - Confidence intervals for a 2-group standardized mean difference
-
ci.tetra() - Confidence interval for a tetrachoric correlation
-
ci.theil() - Theil-Sen estimate and confidence interval for slope
-
ci.tukey() - Tukey-Kramer confidence intervals for all pairwise mean differences in a between-subjects design
-
ci.var.upper() - Upper confidence limit of a variance
-
ci.yule() - Confidence intervals for generalized Yule coefficients
-
adj.se() - Adjusted standard errors for slope coefficients in an exploratory analysis
-
etasqr.gen.2way() - Generalized eta-squared estimates in a two-factor design
-
etasqr.adj() - Bias adjustment for an eta-squared estimate
-
expon.slope() - Confidence interval for an exponentiated slope
-
fitindices() - SEM fit indices
-
iqv() - Indices of qualitative variation
-
pi.score() - Prediction interval for one score
-
pi.score2() - Prediction interval for a difference of scores in a 2-group experiment
-
random.sample() - Generate a random sample
-
random.y() - Generate random sample of scores
-
random.yx() - Generates random bivariate scores
-
randomize() - Randomize a sample into groups
-
signal() - Parameter estimates for a signal detection study
-
slope.contrast() - Contrast coefficients for the slope of a quantitative factor
-
spearmanbrown() - Computes the reliability of a scale with r2 measurements given the reliability of a scale with r1 measurements
-
power.cor() - Approximates the power of a correlation test for a planned sample size
-
power.cor2() - Approximates the power of a test for equal correlations in a 2-group design for planned sample sizes
-
power.lc.mean.bs() - Approximates the power of a test for a linear contrast of means for planned sample sizes in a between-subjects design
-
power.mean.ps() - Approximates the power of a paired-samples t-test for a planned sample size
-
power.mean() - Approximates the power of a one-sample t-test for a planned sample size
-
power.mean2() - Approximates the power of a two-sample t-test for planned sample sizes
-
power.prop.ps() - Approximates the power of a paired-samples test of equal proportions for a planned sample size
-
power.prop() - Approximates the power of a 1-group proportion test for a planned sample size
-
power.prop2() - Approximates the power of a 2-group proportion test for planned sample sizes
-
pi.cor() - Prediction limits for an estimated correlation
-
pi.prop() - Prediction interval for an estimated proportion
-
pi.score.ps() - Prediction interval for difference of scores in a 2-level within-subjects experiment
-
pi.score() - Prediction interval for one score
-
pi.score2() - Prediction interval for a difference of scores in a 2-group experiment
-
pi.var() - Prediction limits for an estimated variance
-
size.ci.agree() - Sample size for a G-index confidence interval
-
size.ci.ancova2() - Sample size for a 2-group ANCOVA confidence interval
-
size.ci.biphi() - Sample size for biserial-phi correlation confidence interval
-
size.ci.condmean() - Sample size for a conditional mean confidence interval
-
size.ci.cor.prior() - Sample size for a Pearson correlation confidence interval using a planning value from a prior study
-
size.ci.cor() - Sample size for a Pearson or partial correlation confidence interval
-
size.ci.cor2() - Sample size for a 2-group Pearson correlation difference confidence interval
-
size.ci.cronbach() - Sample size for a Cronbach reliability confidence interval
-
size.ci.cronbach2() - Sample size for a 2-group Cronbach reliability difference confidence interval
-
size.ci.cv() - Sample size for a coefficient of variation
-
size.ci.etasqr() - Sample size for an eta-squared confidence interval
-
size.ci.gen() - Sample size for a confidence interval for any type of parameter
-
size.ci.gen2() - Sample size for a confidence interval for the difference of any type of parameter
-
size.ci.indirect() - Sample size for an indirect effect confidence interval
-
size.ci.lc.ancova() - Sample size for a linear contrast confidence interval in an ANCOVA
-
size.ci.lc.mean.bs() - Sample size for a between-subjects mean linear contrast confidence interval
-
size.ci.lc.mean.ws() - Sample size for a within-subjects mean linear contrast confidence interval
-
size.ci.lc.median.bs() - Sample size for a between-subjects median linear contrast confidence interval
-
size.ci.lc.prop.bs() - Sample size for a between-subjects proportion linear contrast confidence interval
-
size.ci.lc.stdmean.bs() - Sample size for a between-subjects standardized linear contrast of means confidence interval
-
size.ci.lc.stdmean.ws() - Sample size for a within-subjects standardized linear contrast of means confidence interval
-
size.ci.mape() - Sample size for a mean absolute prediction error confidence interval
-
size.ci.mean.prior() - Sample size for a mean confidence interval using a planning value from a prior study
-
size.ci.mean.ps() - Sample size for a paired-samples mean difference confidence interval
-
size.ci.mean() - Sample size for a mean confidence interval
-
size.ci.mean2() - Sample size for a 2-group mean difference confidence interval
-
size.ci.median() - Sample size for a median confidence interval
-
size.ci.median2() - Sample size for a 2-group median difference confidence interval
-
size.ci.oddsratio() - Sample size for an odds ratio confidence interval
-
size.ci.pbcor() - Sample size for a point-biserial correlation confidence interval
-
size.ci.phi() - Sample size for phi correlation confidence interval
-
size.ci.prop.prior() - Sample size for a proportion confidence interval using a planning value from a prior study
-
size.ci.prop.ps() - Sample size for a paired-sample proportion difference confidence interval
-
size.ci.prop() - Sample size for a proportion confidence interval
-
size.ci.prop2() - Sample size for a 2-group proportion difference confidence interval
-
size.ci.ratio.mean.ps() - Sample size for a paired-samples mean ratio confidence interval
-
size.ci.ratio.mean2() - Sample size for a 2-group mean ratio confidence interval
-
size.ci.ratio.prop.ps() - Sample size for a paired-samples proportion ratio confidence interval
-
size.ci.ratio.prop2() - Sample size for a 2-group proportion ratio confidence interval
-
size.ci.rsqr() - Sample size for a squared multiple correlation confidence interval
-
size.ci.second() - Sample size for a second-stage confidence interval
-
size.ci.slope.gen() - Sample size for a slope confidence interval in a general statistical model
-
size.ci.slope() - Sample size for a slope confidence interval
-
size.ci.spear() - Sample size for a Spearman correlation confidence interval
-
size.ci.spear2() - Sample size for a 2-group Spearman correlation difference confidence interval
-
size.ci.stdmean.ps() - Sample size for a paired-samples standardized mean difference confidence interval
-
size.ci.stdmean2() - Sample size for a 2-group standardized mean difference confidence interval
-
size.ci.tetra() - Sample size for a tetrachoric correlation confidence interval
-
size.ci.yule() - Sample size for a Yule's Q confidence interval
-
size.equiv.mean.ps() - Sample size for a paired-samples mean equivalence test
-
size.equiv.mean2() - Sample size for a 2-group mean equivalence test
-
size.equiv.prop.ps() - Sample size for a paired-samples proportion equivalence test
-
size.equiv.prop2() - Sample size for a 2-group proportion equivalence test
-
size.interval.cor() - Sample size for an interval test of a Pearson or partial correlation
-
size.supinf.mean.ps() - Sample size for a paired-samples mean superiority or noninferiority test
-
size.supinf.mean2() - Sample size for a 2-group mean superiority or noninferiority test
-
size.supinf.prop.ps() - Sample size for a paired-samples superiority or inferiority test of proportions
-
size.supinf.prop2() - Sample size for a 2-group superiority or inferiority test of proportions
-
size.test.ancova2() - Sample size for a 2-group ANCOVA hypothesis test
-
size.test.cor() - Sample size for a test of a Pearson or partial correlation
-
size.test.cor2() - Sample size for a test of equal Pearson or partial correlation in a 2-group design
-
size.test.cronbach() - Sample size to test a Cronbach reliability
-
size.test.cronbach2() - Sample size to test equality of Cronbach reliability coefficients in a 2-group design
-
size.test.gen() - Sample size for a test of any type of parameter
-
size.test.gen2() - Sample size for a test of 2-group difference for any type of parameter
-
size.test.lc.ancova() - Sample size for a mean linear contrast test in an ANCOVA
-
size.test.lc.mean.bs() - Sample size for a test of a between-subjects mean linear contrast
-
size.test.lc.mean.ws() - Sample size for a test of a within-subjects mean linear contrast
-
size.test.lc.prop.bs() - Sample size for a test of between-subjects proportion linear contrast
-
size.test.mann() - Sample size for a Mann-Whitney test
-
size.test.mean.ps() - Sample size for a test of a paired-samples mean difference
-
size.test.mean() - Sample size for a test of a mean
-
size.test.mean2() - Sample size for a test of a 2-group mean difference
-
size.test.prop.ps() - Sample size for a test of a paired-samples proportion difference
-
size.test.prop() - Sample size for a test of a single proportion
-
size.test.prop2() - Sample size for a test of a 2-group proportion difference
-
size.test.sign.ps() - Sample size for a paired-samples sign test
-
size.test.sign() - Sample size for a 1-group sign test
-
size.test.slope.gen() - Sample size for a slope hypothesis test in a general statistical model
-
size.test.slope() - Sample size for a test of a slope
-
sim.ci.cor() - Simulates confidence interval coverage probability for a Pearson correlation
-
sim.ci.mean.ps() - Simulates confidence interval coverage probability for a paired-samples mean difference
-
sim.ci.mean() - Simulates confidence interval coverage probability for a mean
-
sim.ci.mean2() - Simulates confidence interval coverage probability for a 2-group mean difference
-
sim.ci.median.ps() - Simulates confidence interval coverage probability for a median difference in a paired-samples design
-
sim.ci.median() - Simulates confidence interval coverage probability for a median
-
sim.ci.median2() - Simulates confidence interval coverage probability for a median difference in a 2-group design
-
sim.ci.spear() - Simulates confidence interval coverage probability for a Spearman correlation
-
sim.ci.stdmean.ps() - Simulates confidence interval coverage probability for a standardized mean difference in a paired-samples design
-
sim.ci.stdmean2() - Simulates confidence interval coverage probability for a standardized mean difference in a 2-group design
-
test.anova.bs() - Between-subjects F statistic and eta-squared from summary information
-
test.cor() - Hypothesis test for a Pearson or partial correlation
-
test.cor2() - Hypothesis test for a 2-group Pearson or partial correlation difference
-
test.kurtosis() - Computes p-value for test of excess kurtosis
-
test.mean() - Hypothesis test for a mean
-
test.mono.mean.bs() - Test of a monotonic trend in means for an ordered between-subjects factor
-
test.mono.median.bs() - Test of a monotonic trend in medians for an ordered between-subjects factor
-
test.mono.prop.bs() - Test of monotonic trend in proportions for an ordered between-subjects factor
-
test.prop.bs() - Hypothesis test of equal proportions in a between-subjects design
-
test.prop.ps() - Hypothesis test for a paired-samples proportion difference
-
test.prop() - Hypothesis test for a proportion
-
test.prop2() - Hypothesis test for a 2-group proportion difference
-
test.skew() - Computes p-value for test of skewness
-
test.spear() - Hypothesis test for a Spearman correlation
-
test.spear2() - Hypothesis test for a 2-group Spearman correlation difference