Package index
-
ci.2x2.mean.bs()
- Computes tests and confidence intervals of effects in a 2x2 between-subjects design for means
-
ci.2x2.mean.mixed()
- Computes tests and confidence intervals of effects in a 2x2 mixed design for means
-
ci.2x2.mean.ws()
- Computes tests and confidence intervals of effects in a 2x2 within-subjects design for means
-
ci.2x2.median.bs()
- Computes tests and confidence intervals of effects in a 2x2 between-subjects design for medians
-
ci.2x2.median.mixed()
- Computes confidence intervals in a 2x2 mixed design for medians
-
ci.2x2.median.ws()
- Computes confidence intervals of effects in a 2x2 within-subjects design for medians
-
ci.2x2.prop.bs()
- Computes tests and confidence intervals of effects in a 2x2 between- subjects design for proportions
-
ci.2x2.prop.mixed()
- Computes tests and confidence intervals of effects in a 2x2 mixed design for proportions
-
ci.2x2.stdmean.bs()
- Computes confidence intervals of standardized effects in a 2x2 between-subjects design
-
ci.2x2.stdmean.mixed()
- Computes confidence intervals of standardized effects in a 2x2 mixed design
-
ci.2x2.stdmean.ws()
- Computes confidence intervals of standardized effects in a 2x2 within-subjects design
-
ci.agree.3rater()
- Computes confidence intervals for a 3-rater design with dichotomous ratings
-
ci.agree()
- Confidence interval for a G-index of agreement
-
ci.agree2()
- Confidence interval for G-index difference in a 2-group design
-
ci.bayes.cor()
- Bayesian credible interval for a Pearson or partial correlation with a skeptical prior
-
ci.bayes.normal()
- Bayesian credible interval for a normal prior distribution
-
ci.bayes.prop()
- Bayesian credible interval for a proportion
-
ci.bayes.spcor()
- Bayesian credible interval for a semipartial correlation with a skeptical prior
-
ci.biphi()
- Confidence interval for a biserial-phi correlation
-
ci.bscor()
- Confidence interval for a biserial correlation
-
ci.cod()
- Confidence interval for a coefficient of dispersion
-
ci.condslope.log()
- Confidence intervals for conditional (simple) slopes in a logistic model
-
ci.condslope()
- Confidence intervals for conditional (simple) slopes in a linear model
-
ci.cor.dep()
- Confidence interval for a difference in dependent Pearson correlations
-
ci.cor()
- Confidence interval for a Pearson or partial correlation
-
ci.cor2.gen()
- Confidence interval for a 2-group correlation difference
-
ci.cor2()
- Confidence interval for a 2-group Pearson correlation difference
-
ci.cqv()
- Confidence interval for a coefficient of quartile variation
-
ci.cramer()
- Confidence interval for Cramer's V
-
ci.cronbach()
- Confidence interval for a Cronbach reliability
-
ci.cronbach2()
- Confidence interval for a difference in Cronbach reliabilities in a 2-group design
-
ci.cv()
- Confidence interval for a coefficient of variation
-
ci.etasqr()
- Confidence interval for eta-squared
-
ci.fisher()
- Fisher confidence interval
-
ci.indirect()
- Confidence interval for an indirect effect
-
ci.kappa()
- Confidence interval for two kappa reliability coefficients
-
ci.lc.gen.bs()
- Confidence interval for a linear contrast of parameters in a between-subjects design
-
ci.lc.glm()
- Confidence interval for a linear contrast of general linear model parameters
-
ci.lc.mean.bs()
- Confidence interval for a linear contrast of means in a between-subjects design
-
ci.lc.median.bs()
- Confidence interval for a linear contrast of medians in a between-subjects design
-
ci.lc.prop.bs()
- Confidence interval for a linear contrast of proportions in a between- subjects design
-
ci.lc.reg()
- Confidence interval for a linear contrast of regression coefficients in multiple group regression model
-
ci.lc.stdmean.bs()
- Confidence interval for a standardized linear contrast of means in a between-subjects design
-
ci.lc.stdmean.ws()
- Confidence interval for a standardized linear contrast of means in a within-subjects design
-
ci.mad()
- Confidence interval for a mean absolute deviation
-
ci.mann()
- Confidence interval for a Mann-Whitney parameter
-
ci.mape()
- Confidence interval for a mean absolute prediction error
-
ci.mean.fpc()
- Confidence interval for a mean with a finite population correction
-
ci.mean.ps()
- Confidence interval for a paired-samples mean difference
-
ci.mean()
- Confidence interval for a mean
-
ci.mean2()
- Confidence interval for a 2-group mean difference
-
ci.median.ps()
- Confidence interval for a paired-samples median difference
-
ci.median()
- Confidence interval for a median
-
ci.median2()
- Confidence interval for a 2-group median difference
-
ci.oddsratio()
- Confidence interval for an odds ratio
-
ci.pairs.mult()
- Confidence intervals for pairwise proportion differences of a multinomial variable
-
ci.pairs.prop.bs()
- Bonferroni confidence intervals for all pairwise proportion differences in a between-subjects design
-
ci.pbcor()
- Confidence intervals for point-biserial correlations
-
ci.phi()
- Confidence interval for a phi correlation
-
ci.poisson()
- Confidence interval for a Poisson rate
-
ci.popsize()
- Confidence interval for an unknown population size
-
ci.prop.fpc()
- Confidence interval for a proportion with a finite population correction
-
ci.prop.inv()
- Confidence interval for a proportion using inverse sampling
-
ci.prop.ps()
- Confidence interval for a paired-samples proportion difference
-
ci.prop()
- Confidence intervals for a proportion
-
ci.prop2.inv()
- Confidence interval for a 2-group proportion difference using inverse sampling
-
ci.prop2()
- Confidence interval for a 2-group proportion difference
-
ci.pv()
- Confidence intervals for positive and negative predictive values with retrospective sampling
-
ci.random.anova()
- Confidence intervals for parameters of one-way random effects ANOVA
-
ci.ratio.cod2()
- Confidence interval for a ratio of dispersion coefficients in a 2-group design
-
ci.ratio.cv2()
- Confidence interval for a ratio of coefficients of variation in a 2-group design
-
ci.ratio.mad.ps()
- Confidence interval for a paired-samples MAD ratio
-
ci.ratio.mad2()
- Confidence interval for a 2-group ratio of mean absolute deviations
-
ci.ratio.mape2()
- Confidence interval for a ratio of mean absolute prediction errors in a 2-group design
-
ci.ratio.mean.ps()
- Confidence interval for a paired-samples mean ratio
-
ci.ratio.mean2()
- Confidence interval for a 2-group mean ratio
-
ci.ratio.median.ps()
- Confidence interval for a paired-samples median ratio
-
ci.ratio.median2()
- Confidence interval for a 2-group median ratio
-
ci.ratio.poisson2()
- Confidence interval for a ratio of Poisson rates in a 2-group design
-
ci.ratio.prop.ps()
- Confidence interval for a paired-samples proportion ratio
-
ci.ratio.prop2()
- Confidence interval for a 2-group proportion ratio
-
ci.ratio.sd2()
- Confidence interval for a 2-group ratio of standard deviations
-
ci.rel2()
- Confidence interval for a 2-group reliability difference
-
ci.reliability()
- Confidence interval for a reliability coefficient
-
ci.rsqr()
- Confidence interval for squared multiple correlation
-
ci.sign()
- Confidence interval for the parameter of the one-sample sign test
-
ci.slope.mean.bs()
- Confidence interval for the slope of means in a one-factor experimental design with a quantitative between-subjects factor
-
ci.slope.median.bs()
- Confidence interval for the slope of medians in a one-factor experimental design with a quantitative between-subjects factor
-
ci.slope.prop.bs()
- Confidence interval for a slope of a proportion in a single-factor experimental design with a quantitative between-subjects factor
-
ci.spcor()
- Confidence interval for a semipartial correlation
-
ci.spear()
- Confidence interval for a Spearman correlation
-
ci.spear2()
- Confidence interval for a 2-group Spearman correlation difference
-
ci.stdmean.ps()
- Confidence intervals for a paired-samples standardized mean difference
-
ci.stdmean()
- Confidence interval for a standardized mean
-
ci.stdmean.strat()
- Confidence intervals for a 2-group standardized mean difference with stratified sampling
-
ci.stdmean2()
- Confidence intervals for a 2-group standardized mean difference
-
ci.tetra()
- Confidence interval for a tetrachoric correlation
-
ci.theil()
- Theil-Sen estimate and confidence interval for slope
-
ci.tukey()
- Tukey-Kramer confidence intervals for all pairwise mean differences in a between-subjects design
-
ci.var.upper()
- Upper confidence limit of a variance
-
ci.yule()
- Confidence intervals for generalized Yule coefficients
-
adj.se()
- Adjusted standard errors for slope coefficients in an exploratory analysis
-
etasqr.gen.2way()
- Generalized eta-squared estimates in a two-factor design
-
etasqr.adj()
- Bias adjustment for an eta-squared estimate
-
expon.slope()
- Confidence interval for an exponentiated slope
-
fitindices()
- SEM fit indices
-
iqv()
- Indices of qualitative variation
-
pi.score()
- Prediction interval for one score
-
pi.score2()
- Prediction interval for a difference of scores in a 2-group experiment
-
random.sample()
- Generate a random sample
-
random.y()
- Generate random sample of scores
-
random.yx()
- Generates random bivariate scores
-
randomize()
- Randomize a sample into groups
-
signal()
- Parameter estimates for a signal detection study
-
slope.contrast()
- Contrast coefficients for the slope of a quantitative factor
-
spearmanbrown()
- Computes the reliability of a scale with r2 measurements given the reliability of a scale with r1 measurements
-
power.cor()
- Approximates the power of a correlation test for a planned sample size
-
power.cor2()
- Approximates the power of a test for equal correlations in a 2-group design for planned sample sizes
-
power.lc.mean.bs()
- Approximates the power of a test for a linear contrast of means for planned sample sizes in a between-subjects design
-
power.mean.ps()
- Approximates the power of a paired-samples t-test for a planned sample size
-
power.mean()
- Approximates the power of a one-sample t-test for a planned sample size
-
power.mean2()
- Approximates the power of a two-sample t-test for planned sample sizes
-
power.prop.ps()
- Approximates the power of a paired-samples test of equal proportions for a planned sample size
-
power.prop()
- Approximates the power of a 1-group proportion test for a planned sample size
-
power.prop2()
- Approximates the power of a 2-group proportion test for planned sample sizes
-
pi.cor()
- Prediction limits for an estimated correlation
-
pi.prop()
- Prediction interval for an estimated proportion
-
pi.score.ps()
- Prediction interval for difference of scores in a 2-level within-subjects experiment
-
pi.score()
- Prediction interval for one score
-
pi.score2()
- Prediction interval for a difference of scores in a 2-group experiment
-
pi.var()
- Prediction limits for an estimated variance
-
size.ci.agree()
- Sample size for a G-index confidence interval
-
size.ci.ancova2()
- Sample size for a 2-group ANCOVA confidence interval
-
size.ci.biphi()
- Sample size for biserial-phi correlation confidence interval
-
size.ci.condmean()
- Sample size for a conditional mean confidence interval
-
size.ci.cor.prior()
- Sample size for a Pearson correlation confidence interval using a planning value from a prior study
-
size.ci.cor()
- Sample size for a Pearson or partial correlation confidence interval
-
size.ci.cor2()
- Sample size for a 2-group Pearson correlation difference confidence interval
-
size.ci.cronbach()
- Sample size for a Cronbach reliability confidence interval
-
size.ci.cronbach2()
- Sample size for a 2-group Cronbach reliability difference confidence interval
-
size.ci.cv()
- Sample size for a coefficient of variation
-
size.ci.etasqr()
- Sample size for an eta-squared confidence interval
-
size.ci.gen()
- Sample size for a confidence interval for any type of parameter
-
size.ci.gen2()
- Sample size for a confidence interval for the difference of any type of parameter
-
size.ci.indirect()
- Sample size for an indirect effect confidence interval
-
size.ci.lc.ancova()
- Sample size for a linear contrast confidence interval in an ANCOVA
-
size.ci.lc.mean.bs()
- Sample size for a between-subjects mean linear contrast confidence interval
-
size.ci.lc.mean.ws()
- Sample size for a within-subjects mean linear contrast confidence interval
-
size.ci.lc.median.bs()
- Sample size for a between-subjects median linear contrast confidence interval
-
size.ci.lc.prop.bs()
- Sample size for a between-subjects proportion linear contrast confidence interval
-
size.ci.lc.stdmean.bs()
- Sample size for a between-subjects standardized linear contrast of means confidence interval
-
size.ci.lc.stdmean.ws()
- Sample size for a within-subjects standardized linear contrast of means confidence interval
-
size.ci.mape()
- Sample size for a mean absolute prediction error confidence interval
-
size.ci.mean.prior()
- Sample size for a mean confidence interval using a planning value from a prior study
-
size.ci.mean.ps()
- Sample size for a paired-samples mean difference confidence interval
-
size.ci.mean()
- Sample size for a mean confidence interval
-
size.ci.mean2()
- Sample size for a 2-group mean difference confidence interval
-
size.ci.median()
- Sample size for a median confidence interval
-
size.ci.median2()
- Sample size for a 2-group median difference confidence interval
-
size.ci.oddsratio()
- Sample size for an odds ratio confidence interval
-
size.ci.pbcor()
- Sample size for a point-biserial correlation confidence interval
-
size.ci.phi()
- Sample size for phi correlation confidence interval
-
size.ci.prop.prior()
- Sample size for a proportion confidence interval using a planning value from a prior study
-
size.ci.prop.ps()
- Sample size for a paired-sample proportion difference confidence interval
-
size.ci.prop()
- Sample size for a proportion confidence interval
-
size.ci.prop2()
- Sample size for a 2-group proportion difference confidence interval
-
size.ci.ratio.mean.ps()
- Sample size for a paired-samples mean ratio confidence interval
-
size.ci.ratio.mean2()
- Sample size for a 2-group mean ratio confidence interval
-
size.ci.ratio.prop.ps()
- Sample size for a paired-samples proportion ratio confidence interval
-
size.ci.ratio.prop2()
- Sample size for a 2-group proportion ratio confidence interval
-
size.ci.rsqr()
- Sample size for a squared multiple correlation confidence interval
-
size.ci.second()
- Sample size for a second-stage confidence interval
-
size.ci.slope.gen()
- Sample size for a slope confidence interval in a general statistical model
-
size.ci.slope()
- Sample size for a slope confidence interval
-
size.ci.spear()
- Sample size for a Spearman correlation confidence interval
-
size.ci.spear2()
- Sample size for a 2-group Spearman correlation difference confidence interval
-
size.ci.stdmean.ps()
- Sample size for a paired-samples standardized mean difference confidence interval
-
size.ci.stdmean2()
- Sample size for a 2-group standardized mean difference confidence interval
-
size.ci.tetra()
- Sample size for a tetrachoric correlation confidence interval
-
size.ci.yule()
- Sample size for a Yule's Q confidence interval
-
size.equiv.mean.ps()
- Sample size for a paired-samples mean equivalence test
-
size.equiv.mean2()
- Sample size for a 2-group mean equivalence test
-
size.equiv.prop.ps()
- Sample size for a paired-samples proportion equivalence test
-
size.equiv.prop2()
- Sample size for a 2-group proportion equivalence test
-
size.interval.cor()
- Sample size for an interval test of a Pearson or partial correlation
-
size.supinf.mean.ps()
- Sample size for a paired-samples mean superiority or noninferiority test
-
size.supinf.mean2()
- Sample size for a 2-group mean superiority or noninferiority test
-
size.supinf.prop.ps()
- Sample size for a paired-samples superiority or inferiority test of proportions
-
size.supinf.prop2()
- Sample size for a 2-group superiority or inferiority test of proportions
-
size.test.ancova2()
- Sample size for a 2-group ANCOVA hypothesis test
-
size.test.cor()
- Sample size for a test of a Pearson or partial correlation
-
size.test.cor2()
- Sample size for a test of equal Pearson or partial correlation in a 2-group design
-
size.test.cronbach()
- Sample size to test a Cronbach reliability
-
size.test.cronbach2()
- Sample size to test equality of Cronbach reliability coefficients in a 2-group design
-
size.test.gen()
- Sample size for a test of any type of parameter
-
size.test.gen2()
- Sample size for a test of 2-group difference for any type of parameter
-
size.test.lc.ancova()
- Sample size for a mean linear contrast test in an ANCOVA
-
size.test.lc.mean.bs()
- Sample size for a test of a between-subjects mean linear contrast
-
size.test.lc.mean.ws()
- Sample size for a test of a within-subjects mean linear contrast
-
size.test.lc.prop.bs()
- Sample size for a test of between-subjects proportion linear contrast
-
size.test.mann()
- Sample size for a Mann-Whitney test
-
size.test.mean.ps()
- Sample size for a test of a paired-samples mean difference
-
size.test.mean()
- Sample size for a test of a mean
-
size.test.mean2()
- Sample size for a test of a 2-group mean difference
-
size.test.prop.ps()
- Sample size for a test of a paired-samples proportion difference
-
size.test.prop()
- Sample size for a test of a single proportion
-
size.test.prop2()
- Sample size for a test of a 2-group proportion difference
-
size.test.sign.ps()
- Sample size for a paired-samples sign test
-
size.test.sign()
- Sample size for a 1-group sign test
-
size.test.slope.gen()
- Sample size for a slope hypothesis test in a general statistical model
-
size.test.slope()
- Sample size for a test of a slope
-
sim.ci.cor()
- Simulates confidence interval coverage probability for a Pearson correlation
-
sim.ci.mean.ps()
- Simulates confidence interval coverage probability for a paired-samples mean difference
-
sim.ci.mean()
- Simulates confidence interval coverage probability for a mean
-
sim.ci.mean2()
- Simulates confidence interval coverage probability for a 2-group mean difference
-
sim.ci.median.ps()
- Simulates confidence interval coverage probability for a median difference in a paired-samples design
-
sim.ci.median()
- Simulates confidence interval coverage probability for a median
-
sim.ci.median2()
- Simulates confidence interval coverage probability for a median difference in a 2-group design
-
sim.ci.spear()
- Simulates confidence interval coverage probability for a Spearman correlation
-
sim.ci.stdmean.ps()
- Simulates confidence interval coverage probability for a standardized mean difference in a paired-samples design
-
sim.ci.stdmean2()
- Simulates confidence interval coverage probability for a standardized mean difference in a 2-group design
-
test.anova.bs()
- Between-subjects F statistic and eta-squared from summary information
-
test.cor()
- Hypothesis test for a Pearson or partial correlation
-
test.cor2()
- Hypothesis test for a 2-group Pearson or partial correlation difference
-
test.kurtosis()
- Computes p-value for test of excess kurtosis
-
test.mean()
- Hypothesis test for a mean
-
test.mono.mean.bs()
- Test of a monotonic trend in means for an ordered between-subjects factor
-
test.mono.median.bs()
- Test of a monotonic trend in medians for an ordered between-subjects factor
-
test.mono.prop.bs()
- Test of monotonic trend in proportions for an ordered between-subjects factor
-
test.prop.bs()
- Hypothesis test of equal proportions in a between-subjects design
-
test.prop.ps()
- Hypothesis test for a paired-samples proportion difference
-
test.prop()
- Hypothesis test for a proportion
-
test.prop2()
- Hypothesis test for a 2-group proportion difference
-
test.skew()
- Computes p-value for test of skewness
-
test.spear()
- Hypothesis test for a Spearman correlation
-
test.spear2()
- Hypothesis test for a 2-group Spearman correlation difference