Computes equal variance and unequal variance confidence intervals for a population 2-group mean difference using the estimated means, estimated standard deviations, and sample sizes. Also computes equal variance and unequal variance independent-samples t-tests. Use the t.test function for raw data input.
For more details, see Section 2.3 of Bonett (2021, Volume 1)
Value
Returns a 2-row matrix. The columns are:
Estimate - estimated mean difference
SE - standard error
t - t test statistic
df - degrees of freedom
p - two-sided p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Snedecor GW, Cochran WG (1989). Statistical Methods, 8th edition. ISU University Pres, Ames, Iowa.
Bonett DG (2021). Statistical Methods for Psychologists https://dgbonett.sites.ucsc.edu/.
Examples
ci.mean2(.05, 19.4, 11.3, 2.70, 2.10, 40, 40)
#> Estimate SE t df p LL
#> Equal Variances Assumed: 8.1 0.5408327 14.9769 78.00 0 7.023285
#> Equal Variances Not Assumed: 8.1 0.5408327 14.9769 73.54 0 7.022255
#> UL
#> Equal Variances Assumed: 9.176715
#> Equal Variances Not Assumed: 9.177745
# Should return:
# Estimate SE t df p
# Equal Variances Assumed: 8.1 0.5408327 14.9769 78.00 0
# Equal Variances Not Assumed: 8.1 0.5408327 14.9769 73.54 0
# LL UL
# Equal Variances Assumed: 7.023285 9.176715
# Equal Variances Not Assumed: 7.022256 9.177744