Computes a Bayesian credible interval for a population proportion using the mean and standard deviation of a prior Beta distribution along with sample information. The mean and standard deviation of the posterior Beta distribution are also reported. For a noninformative prior, set the prior mean to .5 and the prior standard deviation to 1/sqrt(12) (which corresponds to a Beta(1,1) distribution). The prior variance must be less than m(1 - m) where m is the prior mean.
ci.bayes.prop(alpha, prior.mean, prior.sd, f, n)
alpha level for 1-alpha credibility interval
mean of prior Beta distribution
standard deviation of prior Beta distribution
number of participants who have the attribute
sample size
Returns a 1-row matrix. The columns are:
Posterior mean - posterior mean of Beta distribution
Posterior SD - posterior standard deviation of Beta distribution
LL - lower limit of the credible interval
UL - upper limit of the credible interval
Gelman A, B. CJ, Stern HS, Rubin DB (2004). Bayesian Data Analysis, 2nd edition. Chapman & Hall.
ci.bayes.prop(.05, .4, .1, 12, 100)
#> Posterior mean Posterior SD LL UL
#> 0.1723577 0.03419454 0.1111747 0.2436185
# Should return:
# Posterior mean Posterior SD LL UL
# 0.15 0.03273268 0.09218 0.2188484