Confidence intervals for conditional (simple) slopes in a linear model
Source:R/statpsych2.R
ci.condslope.Rd
Computes confidence intervals and test statistics for population conditional slopes (simple slopes) in a general linear model that includes a predictor variable (x1), a moderator variable (x2), and a product predictor variable (x1*x2). Conditional slopes are computed at specified low and high values of the moderator variable.
Arguments
- alpha
alpha level for 1-alpha confidence
- b1
estimated slope coefficient for predictor variable
- b2
estimated slope coefficient for product variable
- se1
standard error for predictor coefficient
- se2
standard error for product coefficient
- cov
estimated covariance between predictor and product coefficients
- lo
low value of moderator variable
- hi
high value of moderator variable
- dfe
error degrees of freedom
Value
Returns a 2-row matrix. The columns are:
Estimate - estimated conditional slope
t - t test statistic
p - two-sided p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
Examples
ci.condslope(.05, .132, .154, .031, .021, .015, 5.2, 10.6, 122)
#> Estimate SE t df p LL
#> At low moderator 0.9328 0.4109570 2.269824 122 0.024973618 0.1192696
#> At high moderator 1.7644 0.6070517 2.906507 122 0.004342076 0.5626805
#> UL
#> At low moderator 1.746330
#> At high moderator 2.966119
# Should return:
# Estimate SE t df p
# At low moderator 0.9328 0.4109570 2.269824 122 0.024973618
# At high moderator 1.7644 0.6070517 2.906507 122 0.004342076
# LL UL
# At low moderator 0.1192696 1.746330
# At high moderator 0.5626805 2.966119