Computes a Fisher confidence interval for a population Pearson correlation
or partial correlation with s control variables. Set s = 0 for a Pearson
correlation. A bias adjustment is used to reduce the bias of the Fisher
transformed correlation. This function uses an estimated correlation as
input. Use the cor.test function for raw data input.
For more details, see Section 1.14 of Bonett (2021, Volume 2)
Arguments
- alpha
alpha level for 1-alpha confidence
- cor
estimated Pearson or partial correlation
- s
number of control variables
- n
sample size
Value
Returns a 1-row matrix. The columns are:
Estimate - estimated correlation (from input)
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Snedecor GW, Cochran WG (1989).
Statistical Methods, 8th edition.
ISU University Pres, Ames, Iowa.
Bonett DG (2021).
Statistical Methods for Psychologists https://dgbonett.sites.ucsc.edu/.
Examples
ci.cor(.05, .60, 0, 150)
#> Estimate SE LL UL
#> 0.6 0.05243 0.485 0.6925
# Should return:
# Estimate SE LL UL
# 0.6 0.05243 0.485 0.6925
ci.cor(.05, .70, 1, 135)
#> Estimate SE LL UL
#> 0.7 0.04406 0.6002 0.7763
# Should return:
# Estimate SE LL UL
# 0.7 0.04406 0.6002 0.7763