Computes a confidence interval for a population Cramer's V coefficient
of nominal association for an r x s contingency table. The confidence interval
is based on a noncentral chi-square distribution, and an approximate standard
error is recovered from the confidence interval.
Usage
ci.cramer(alpha, chisqr, r, c, n)
Arguments
- alpha
alpha value for 1-alpha confidence
- chisqr
Pearson chi-square test statistic of independence
- r
number of rows in contingency table
- c
number of columns in contingency table
- n
sample size
Value
Returns a 1-row matrix. The columns are:
Estimate - estimate of Cramer's V
SE - recovered standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Smithson M (2003).
Confidence Intervals.
Sage.
Examples
ci.cramer(.05, 19.21, 2, 3, 200)
#> Estimate SE LL UL
#> 0.3099 0.0718 0.1601 0.4417
# Should return:
# Estimate SE LL UL
# 0.3099 0.0718 0.1601 0.4417