Skip to contents

Computes a confidence interval for a population Cramer's V coefficient of nominal association for an r x s contingency table. The confidence interval is based on a noncentral chi-square distribution, and an approximate standard error is recovered from the confidence interval.

For more details, see Section 3.10 of Bonett (2021, Volume 3)

Usage

ci.cramer(alpha, chisqr, r, c, n)

Arguments

alpha

alpha value for 1-alpha confidence

chisqr

Pearson chi-square test statistic of independence

r

number of rows in contingency table

c

number of columns in contingency table

n

sample size

Value

Returns a 1-row matrix. The columns are:

  • Estimate - estimate of Cramer's V

  • SE - recovered standard error

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

References

Smithson M (2003). Confidence Intervals. Sage.

Bonett DG (2021). Statistical Methods for Psychologists https://dgbonett.sites.ucsc.edu/.

Examples

ci.cramer(.05, 19.21, 2, 3, 200)
#>  Estimate     SE   LL    UL
#>      0.31 0.0718 0.16 0.442

# Should return:
# Estimate     SE   LL    UL
#     0.31 0.0718 0.16 0.442