Computes a confidence interval for a population Cramer's V coefficient
of nominal association for an r x s contingency table. The confidence interval
is based on a noncentral chi-square distribution, and an approximate standard
error is recovered from the confidence interval.
For more details, see Section 3.10 of Bonett (2021, Volume 3)
Usage
ci.cramer(alpha, chisqr, r, c, n)
Arguments
- alpha
alpha value for 1-alpha confidence
- chisqr
Pearson chi-square test statistic of independence
- r
number of rows in contingency table
- c
number of columns in contingency table
- n
sample size
Value
Returns a 1-row matrix. The columns are:
Estimate - estimate of Cramer's V
SE - recovered standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Smithson M (2003).
Confidence Intervals.
Sage.
Bonett DG (2021).
Statistical Methods for Psychologists https://dgbonett.sites.ucsc.edu/.
Examples
ci.cramer(.05, 19.21, 2, 3, 200)
#> Estimate SE LL UL
#> 0.31 0.0718 0.16 0.442
# Should return:
# Estimate SE LL UL
# 0.31 0.0718 0.16 0.442