Computes an adjusted Wald confidence interval for a difference of population proportions in a paired-samples design. This function requires the frequency counts from a 2 x 2 contingency table for two repeated dichotomous measurements.

ci.prop.ps(alpha, f00, f01, f10, f11)

Arguments

alpha

alpha level for 1-alpha confidence

f00

number of participants with y = 0 and x = 0

f01

number of participants with y = 0 and x = 1

f10

number of participants with y = 1 and x = 0

f11

number of participants with y = 1 and x = 1

Value

Returns a 1-row matrix. The columns are:

  • Estimate - adjusted estimate of proportion difference

  • SE - adjusted standard error

  • LL - lower limit of the adjusted Wald confidence interval

  • UL - upper limit of the adjusted Wald confidence interval

References

Bonett DG, Price RM (2012). “Adjusted wald confidence interval for a difference of binomial proportions based on paired data.” Journal of Educational and Behavioral Statistics, 37(4), 479--488. ISSN 1076-9986, doi:10.3102/1076998611411915 .

Examples

ci.prop.ps(.05, 12, 4, 26, 6)
#>  Estimate         SE        LL        UL
#>      0.44 0.09448809 0.2548067 0.6251933

# Should return:
# Estimate         SE        LL        UL
#     0.44 0.09448809 0.2548067 0.6251933