Computes adjusted Wald (Agresi-Coull), Wilson, and exact confidence intervals for a population proportion. The Wilson confidence interval uses a continuity correction.
For more details, see Section 1.5 of Bonett (2021, Volume 3)
Value
Returns a 2-row matrix. The columns of row 1 are:
Estimate - adjusted estimate of proportion
SE - standard error of adjusted estimate
LL - lower limit of the adjusted Wald confidence interval
UL - upper limit of the adjusted Wald confidence interval
The columns of row 2 are:
Estimate - ML estimate of proportion
SE - standard error of ML estimate
LL - lower limit of the Wilson confidence interval
UL - upper limit of the Wilson confidence interval
The columns of row 3 are:
Estimate - ML estimate of proportion
SE - standard error of ML estimate
LL - lower limit of the exact confidence interval
UL - upper limit of the exact confidence interval
References
Bonett DG (2021). Statistical Methods for Psychologists https://dgbonett.sites.ucsc.edu/.
Agresti A, Coull BA (1998). “Approximate is better than 'exact' for interval estimation of binomial proportions.” The American Statistician, 52(2), 119–126. ISSN 0003-1305, doi:10.1080/00031305.1998.10480550 .
Examples
ci.prop(.05, 120, 300)
#> Estimate SE LL UL
#> Adjusted Wald 0.4013158 0.02811287 0.3462156 0.4564160
#> Wilson with cc 0.4000000 0.02828427 0.3445577 0.4580464
#> Exact 0.4000000 0.02828427 0.3441290 0.4578664
# Should return:
# Estimate SE LL UL
# Adjusted Wald 0.4013158 0.02811287 0.3462156 0.4564160
# Wilson with cc 0.4000000 0.02828427 0.3445577 0.4580464
# Exact 0.4000000 0.02828427 0.3441290 0.4578664