Computes adjusted Wald (Agresi-Coull), Wilson, and exact confidence intervals for a population proportion. The Wilson confidence interval uses a continuity correction.
Value
Returns a 2-row matrix. The columns of row 1 are:
Estimate - adjusted estimate of proportion
SE - standard error of adjusted estimate
LL - lower limit of the adjusted Wald confidence interval
UL - upper limit of the adjusted Wald confidence interval
The columns of row 2 are:
Estimate - ML estimate of proportion
SE - standard error of ML estimate
LL - lower limit of the Wilson confidence interval
UL - upper limit of the Wilson confidence interval
The columns of row 3 are:
Estimate - ML estimate of proportion
SE - standard error of ML estimate
LL - lower limit of the exact confidence interval
UL - upper limit of the exact confidence interval
References
Agresti A, Coull BA (1998). “Approximate is better than 'exact' for interval estimation of binomial proportions.” The American Statistician, 52(2), 119–126. ISSN 0003-1305, doi:10.1080/00031305.1998.10480550 .
Examples
ci.prop(.05, 12, 100)
#> Estimate SE LL UL
#> Adjusted Wald 0.1346154 0.03346842 0.06901848 0.2002123
#> Wilson with cc 0.1200000 0.03249615 0.06625153 0.2039772
#> Exact 0.1200000 0.03249615 0.06356890 0.2002357
# Should return:
# Estimate SE LL UL
# Adjusted Wald 0.1346154 0.03346842 0.06901848 0.2002123
# Wilson with cc 0.1200000 0.03249615 0.06625153 0.2039772
# Exact 0.1200000 0.03249615 0.06356890 0.2002357