Computes a confidence interval for a population eta-squared, partial eta-squared, or generalized eta-squared in a fixed-factor between-subjects design. An approximate bias adjusted estimate is computed, and an approximate standard error is recovered from the confidence interval.

ci.etasqr(alpha, etasqr, df1, df2)

Arguments

alpha

alpha value for 1-alpha confidence

etasqr

estimated eta-squared

df1

degrees of freedom for effect

df2

error degrees of freedom

Value

Returns a 1-row matrix. The columns are:

  • Eta-squared - eta-squared (from input)

  • adj Eta-squared - bias adjusted eta-squared estimate

  • SE - recovered standard error

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

Examples

ci.etasqr(.05, .241, 3, 116)
#>  Eta-squared adj Eta-squared         SE        LL        UL
#>        0.241       0.2213707 0.06258283 0.1040229 0.3493431

# Should return:
# Eta-squared  adj Eta-squared         SE        LL        UL
#       0.241        0.2213707 0.06258283 0.1040229 0.3493431