Confidence interval for a standardized linear contrast of means in a within-subjects design
Source:R/statpsych1.R
ci.lc.stdmean.ws.Rd
Computes confidence intervals for two types of population standardized linear contrast of means (unweighted standardizer and level 1 standardizer) in a within-subjects design. Equality of variances is not assumed, but the correlations among the repeated measures are assumed to be approximately equal.
Arguments
- alpha
alpha level for 1-alpha confidence
- m
vector of estimated means for levels of within-subjects factor
- sd
vector of estimated standard deviations for levels of within-subjects factor
- cor
average estimated correlation of all measurement pairs
- n
sample size
- q
vector of within-subjects contrast coefficients
Value
Returns a 2-row matrix. The columns are:
Estimate - estimated standardized linear contrast
adj Estimate - bias adjusted standardized linear contrast estimate
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2008). “Confidence intervals for standardized linear contrasts of means.” Psychological Methods, 13(2), 99–109. ISSN 1939-1463, doi:10.1037/1082-989X.13.2.99 .
Examples
m <- c(33.5, 37.9, 38.0, 44.1)
sd <- c(3.84, 3.84, 3.65, 4.98)
q <- c(.5, .5, -.5, -.5)
ci.lc.stdmean.ws(.05, m, sd, .672, 20, q)
#> Estimate adj Estimate SE LL UL
#> Unweighted standardizer: -1.301263 -1.266557 0.3147937 -1.918248 -0.6842788
#> Level 1 standardizer: -1.393229 -1.337500 0.3661824 -2.110934 -0.6755248
# Should return:
# Estimate adj Estimate SE LL UL
# Unweighted standardizer: -1.301263 -1.266557 0.3147937 -1.918248 -0.6842788
# Level 1 standardizer: -1.393229 -1.337500 0.3661824 -2.110934 -0.6755248