R/statpsych2.R
ci.lc.glm.Rd
Computes the estimate, standard error, and confidence interval for a linear contrast of parameters in a general linear model using coef(object) and vcov(object) where "object" is a fitted model object from the lm function.
ci.lc.glm(alpha, n, b, V, q)
alpha for 1 - alpha confidence
sample size
vector of parameter estimates from coef(object)
covariance matrix of parameter estimates from vcov(object)
vector of coefficients
Returns a 1-row matrix. The columns are:
Estimate - estimate of linear function
SE - standard error
t - t test statistic
df - degrees of freedom
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
y <- c(43, 62, 49, 60, 36, 79, 55, 42, 67, 50)
x1 <- c(3, 6, 4, 6, 2, 7, 4, 2, 7, 5)
x2 <- c(4, 6, 3, 7, 1, 9, 3, 3, 8, 4)
out <- lm(y ~ x1 + x2)
b <- coef(out)
V <- vcov(out)
n <- length(y)
q <- c(0, .5, .5)
b
#> (Intercept) x1 x2
#> 26.891111 3.648889 2.213333
ci.lc.glm(.05, n, b, V, q)
#> Estimate SE t df p LL UL
#> 2.931111 0.4462518 6.56829 7 0.000313428 1.875893 3.986329
# Should return:
# (Intercept) x1 x2
# 26.891111 3.648889 2.213333
#
# Estimate SE t df p LL UL
# 2.931111 0.4462518 6.56829 7 0.000313428 1.875893 3.986329