Computes confidence intervals of standardized effects in a 2x2 within-subjects design
Source:R/statpsych1.R
ci.2x2.stdmean.ws.Rd
Computes confidence intervals for standardized AB interaction effect, main effect of A, main effect of B, simple main effects of A, and simple main effects of B in a 2x2 within-subjects factorial design. Equality of population variances is not assumed. A square root unweigthed average variance standardizer is used.
Value
Returns a 7-row matrix (one row per effect). The columns are:
Estimate - estimated standardized effect
adj Estimate - bias adjusted standardized effect estimate
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2008). “Confidence intervals for standardized linear contrasts of means.” Psychological Methods, 13(2), 99–109. ISSN 1939-1463, doi:10.1037/1082-989X.13.2.99 .
Examples
y11 <- c(21, 39, 32, 29, 27, 17, 27, 21, 28, 17, 12, 27)
y12 <- c(20, 36, 33, 27, 28, 14, 30, 20, 27, 15, 11, 22)
y21 <- c(21, 36, 30, 27, 28, 15, 27, 18, 29, 16, 11, 22)
y22 <- c(18, 34, 29, 28, 28, 17, 27, 21, 26, 16, 14, 23)
ci.2x2.stdmean.ws(.05, y11, y12, y21, y22)
#> Estimate adj Estimate SE LL UL
#> AB: 0.17248839 0.16446123 0.13654635 -0.095137544 0.4401143
#> A: 0.10924265 0.10415878 0.05752822 -0.003510596 0.2219959
#> B: 0.07474497 0.07126653 0.05920554 -0.041295751 0.1907857
#> A at b1: 0.19548684 0.18638939 0.08460680 0.029660560 0.3613131
#> A at b2: 0.02299845 0.02192816 0.09371838 -0.160686202 0.2066831
#> B at a1: 0.16098916 0.15349715 0.09457347 -0.024371434 0.3463498
#> B at a2: -0.01149923 -0.01096408 0.08595873 -0.179975237 0.1569768
# Should return:
# Estimate adj Estimate SE LL UL
# AB: 0.17248839 0.16446123 0.13654635 -0.095137544 0.4401143
# A: 0.10924265 0.10415878 0.05752822 -0.003510596 0.2219959
# B: 0.07474497 0.07126653 0.05920554 -0.041295751 0.1907857
# A at b1: 0.19548684 0.18638939 0.08460680 0.029660560 0.3613131
# A at b2: 0.02299845 0.02192816 0.09371838 -0.160686202 0.2066831
# B at a1: 0.16098916 0.15349715 0.09457347 -0.024371434 0.3463498
# B at a2: -0.01149923 -0.01096408 0.08595873 -0.179975237 0.1569768