Computes confidence intervals for four generalized Yule measures of association (Yule Q, Yule Y, Digby H, and Bonett-Price Y*) using a transformation of a confidence interval for an odds ratio with .5 added to each cell frequency. This function requires the frequency counts from a 2 x 2 contingency table for two dichotomous variables. Digby H is sometimes used as a crude approximation to the tetrachoric correlation. Yule Y is equal to the phi coefficient only when all marginal frequencies are equal. Bonett-Price Y* is a better approximation to the phi coefficient when the marginal frequencies are not equal.
ci.yule(alpha, f00, f01, f10, f11)
alpha level for 1-alpha confidence
number of participants with y = 0 and x = 0
number of participants with y = 0 and x = 1
number of participants with y = 1 and x = 0
number of participants with y = 1 and x = 1
Returns a 1-row matrix. The columns are:
Estimate - estimate of generalized Yule coefficient
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
Bonett DG, Price RM (2007). “Statistical inference for generalized Yule coefficients in 2x2 contingency tables.” Sociological Methods & Research, 35(3), 429--446. ISSN 0049-1241, doi:10.1177/0049124106292358 .
ci.yule(.05, 229, 28, 96, 24)
#> Estimate SE LL UL
#> Q: 0.3430670 0.13280379 0.06247099 0.5734020
#> Y: 0.1769015 0.07290438 0.03126603 0.3151817
#> H: 0.2619244 0.10514465 0.04687994 0.4537659
#> Y*: 0.1311480 0.05457236 0.02307188 0.2361941
# Should return:
# Estimate SE LL UL
# Q: 0.3430670 0.13280379 0.06247099 0.5734020
# Y: 0.1769015 0.07290438 0.03126603 0.3151817
# H: 0.2619244 0.10514465 0.04687994 0.4537659
# Y*: 0.1311480 0.05457236 0.02307188 0.2361941