Computes confidence intervals for four generalized Yule measures of association (Yule Q, Yule Y, Digby H, and Bonett-Price Y*) using a transformation of a confidence interval for an odds ratio with .5 added to each cell frequency. This function requires the frequency counts from a 2 x 2 contingency table for two dichotomous variables. Digby H is sometimes used as a crude approximation to the tetrachoric correlation. Yule Y is equal to the phi coefficient only when all marginal frequencies are equal. Bonett-Price Y* is a better approximation to the phi coefficient when the marginal frequencies are not equal.
For more details, see Section 3.4 of Bonett (2021, Volume 3)
Value
Returns a 1-row matrix. The columns are:
Estimate - estimate of generalized Yule coefficient
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2021). Statistical Methods for Psychologists https://dgbonett.sites.ucsc.edu/. Bonett DG, Price RM (2007). “Statistical inference for generalized Yule coefficients in 2x2 contingency tables.” Sociological Methods & Research, 35(3), 429–446. ISSN 0049-1241, doi:10.1177/0049124106292358 .
Examples
ci.yule(.05, 229, 28, 96, 24)
#> Estimate SE LL UL
#> Q: 0.343 0.1328 0.062 0.573
#> Y: 0.177 0.0729 0.031 0.315
#> H: 0.262 0.1051 0.047 0.454
#> Y*: 0.131 0.0546 0.023 0.236
# Should return:
# Estimate SE LL UL
# Q: 0.343 0.1328 0.062 0.573
# Y: 0.177 0.0729 0.031 0.315
# H: 0.262 0.1051 0.047 0.454
# Y*: 0.131 0.0546 0.023 0.236