Computes a distribution-free confidence interval for a difference of population medians in a paired-samples design. This function also computes the standard error of each median and the covariance between the two estimated medians. Tied scores within each measurement are assumed to be rare.
Value
Returns a 1-row matrix. The columns are:
Median1 - estimated median for measurement 1
Median2 - estimated median for measurement 2
Median1-Median2 - estimated difference of medians
SE1 - standard error of median 1
SE2 - standard error of median 2
COV - covariance of the two estimated medians
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG, Price RM (2020). “Interval estimation for linear functions of medians in within-subjects and mixed designs.” British Journal of Mathematical and Statistical Psychology, 73(2), 333–346. ISSN 0007-1102, doi:10.1111/bmsp.12171 .
Examples
y1 <- c(21.1, 4.9, 9.2, 12.4, 35.8, 18.1, 10.7, 22.9, 24.0, 1.2, 6.1, 8.3, 13.1, 16.2)
y2 <- c(67.0, 28.1, 30.9, 28.6, 52.0, 40.8, 25.8, 37.4, 44.9, 10.3, 14.9, 20.2, 28.8, 40.6)
ci.median.ps(.05, y1, y2)
#> Median1 Median2 Median1-Median2 SE LL UL SE1 SE2
#> 12.75 29.85 -17.1 3.704248 -24.36019 -9.839807 3.379695 4.968956
#> COV
#> 11.1957
# Should return:
# Median1 Median2 Median1-Median2 SE LL UL
# 12.75 29.85 -17.1 3.704248 -24.36019 -9.839807
# SE1 SE2 COV
# 3.379695 4.968956 11.1957