Package index
-
meta.ave.agree()
- Confidence interval for an average G-index agreement coefficient
-
meta.ave.cor.gen()
- Confidence interval for an average correlation of any type
-
meta.ave.cor()
- Confidence interval for an average Pearson or partial correlation
-
meta.ave.cronbach()
- Confidence interval for an average Cronbach alpha reliability
-
meta.ave.gen.cc()
- Confidence interval for an average effect size using a constant coefficient model
-
meta.ave.gen.log()
- Exponentiated confidence interval for an average of log-transformed parameters
-
meta.ave.gen.rc()
- Confidence interval for an average effect size using a random coefficient model
-
meta.ave.gen()
- Confidence interval for an average of any parameter
-
meta.ave.mean.ps()
- Confidence interval for an average mean difference from paired-samples studies
-
meta.ave.mean2()
- Confidence interval for an average mean difference from 2-group studies
-
meta.ave.meanratio.ps()
- Confidence interval for an average mean ratio from paired-samples studies
-
meta.ave.meanratio2()
- Confidence interval for an average mean ratio from 2-group studies
-
meta.ave.oddsratio()
- Confidence interval for average odds ratio from 2-group studies
-
meta.ave.path()
- Confidence interval for an average slope coefficient in a general linear model or a path model.
-
meta.ave.pbcor()
- Confidence interval for an average point-biserial correlation
-
meta.ave.plot()
- Forest plot for average effect sizes
-
meta.ave.prop.ps()
- Confidence interval for an average proportion difference in paired-samples studies
-
meta.ave.prop2()
- Confidence interval for an average proportion difference in 2-group studies
-
meta.ave.propratio2()
- Confidence interval for an average proportion ratio from 2-group studies
-
meta.ave.semipart()
- Confidence interval for an average semipartial correlation
-
meta.ave.slope()
- Confidence interval for an average slope coefficient
-
meta.ave.spear()
- Confidence interval for an average Spearman correlation
-
meta.ave.stdmean.ps()
- Confidence interval for an average standardized mean difference from paired-samples studies
-
meta.ave.stdmean2()
- Confidence interval for an average standardized mean difference from 2-group studies
-
meta.ave.var()
- Confidence interval for an average variance
Meta-analysis of categorical moderators
Estimate differences between linear contrasts of groups of studies
-
meta.lc.agree()
- Confidence interval for a linear contrast of G-index coefficients
-
meta.lc.gen()
- Confidence interval for a linear contrast of effect sizes
-
meta.lc.mean.ps()
- Confidence interval for a linear contrast of mean differences from paired-samples studies
-
meta.lc.mean1()
- Confidence interval for a linear contrast of means
-
meta.lc.mean2()
- Confidence interval for a linear contrast of mean differences from 2-group studies
-
meta.lc.meanratio.ps()
- Confidence interval for a log-linear contrast of mean ratios from paired-samples studies
-
meta.lc.meanratio2()
- Confidence interval for a log-linear contrast of mean ratios from 2-group studies
-
meta.lc.oddsratio()
- Confidence interval for a log-linear contrast of odds ratios
-
meta.lc.prop.ps()
- Confidence interval for a linear contrast of proportion differences in paired-samples studies
-
meta.lc.prop1()
- Confidence interval for a linear contrast of proportions
-
meta.lc.prop2()
- Confidence interval for a linear contrast of proportion differences in 2-group studies
-
meta.lc.propratio2()
- Confidence interval for a log-linear contrast of proportion ratios from 2-group studies
-
meta.lc.stdmean.ps()
- Confidence interval for a linear contrast of standardized mean differences from paired-samples studies
-
meta.lc.stdmean2()
- Confidence interval for a linear contrast of standardized mean differences from 2-group studies
Meta-regression
Estimate relationships between quantitative predictors and effect sizes in groups of studies
-
meta.lm.agree()
- Meta-regression analysis for G agreement indices
-
meta.lm.cor.gen()
- Meta-regression analysis for correlations
-
meta.lm.cor()
- Meta-regression analysis for Pearson or partial correlations
-
meta.lm.cronbach()
- Meta-regression analysis for Cronbach reliabilities
-
meta.lm.gen()
- Meta-regression analysis for any type of effect size
-
meta.lm.mean.ps()
- Meta-regression analysis for paired-samples mean differences
-
meta.lm.mean1()
- Meta-regression analysis for 1-group means
-
meta.lm.mean2()
- Meta-regression analysis for 2-group mean differences
-
meta.lm.meanratio.ps()
- Meta-regression analysis for paired-samples log mean ratios
-
meta.lm.meanratio2()
- Meta-regression analysis for 2-group log mean ratios
-
meta.lm.oddsratio()
- Meta-regression analysis for odds ratios
-
meta.lm.prop.ps()
- Meta-regression analysis for paired-samples proportion differences
-
meta.lm.prop1()
- Meta-regression analysis for 1-group proportions
-
meta.lm.prop2()
- Meta-regression analysis for 2-group proportion differences
-
meta.lm.propratio2()
- Meta-regression analysis for 2-group proportion ratios
-
meta.lm.semipart()
- Meta-regression analysis for semipartial correlations
-
meta.lm.spear()
- Meta-regression analysis for Spearman correlations
-
meta.lm.stdmean.ps()
- Meta-regression analysis for paired-samples standardized mean differences
-
meta.lm.stdmean2()
- Meta-regression analysis for 2-group standardized mean differences
-
meta.sub.cor()
- Confidence interval for a subgroup difference in average Pearson or partial correlations
-
meta.sub.cronbach()
- Confidence interval for a subgroup difference in average Cronbach reliabilities
-
meta.sub.gen()
- Confidence interval for a subgroup difference in average effect size
-
meta.sub.pbcor()
- Confidence interval for a subgroup difference in average point-biserial correlations
-
meta.sub.semipart()
- Confidence interval for a subgroup difference in average semipartial correlations
-
meta.sub.spear()
- Confidence interval for a subgroup difference in average Spearman correlations
-
replicate.agree()
- Compares and combines G-index of agreement in original and follow-up studies
-
replicate.cor.gen()
- Compares and combines any type of correlation in original and follow-up studies
-
replicate.cor()
- Compares and combines Pearson or partial correlations in original and follow-up studies
-
replicate.cronbach()
- Compares and combines Cronbach reliablity in original and follow-up studies
-
replicate.gen()
- Compares and combines effect sizes in original and follow-up studies
-
replicate.mean.ps()
- Compares and combines paired-samples mean differences in original and follow-up studies
-
replicate.mean1()
- Compares and combines single mean in original and follow-up studies
-
replicate.mean2()
- Compares and combines 2-group mean differences in original and follow-up studies
-
replicate.oddsratio()
- Compares and combines odds ratios in original and follow-up studies
-
replicate.plot()
- Plot to compare estimates from original and follow-up studies
-
replicate.prop.ps()
- Compares and combines paired-samples proportion differences in original and follow-up studies
-
replicate.prop1()
- Compares and combines single proportions in original and follow-up studies
-
replicate.prop2()
- Compares and combines 2-group proportion differences in original and follow-up studies
-
replicate.propratio2()
- Compares and combines 2-group proportion ratios in original and follow-up studies
-
replicate.slope()
- Compares and combines slope coefficients in original and follow-up studies
-
replicate.spear()
- Compares and combines Spearman correlations in original and follow-up studies
-
replicate.stdmean.ps()
- Compares and combines paired-samples standardized mean differences in original and follow-up studies
-
replicate.stdmean2()
- Compares and combines 2-group standardized mean differences in original and follow-up studies
-
se.agree()
- Computes the estimate and standard error for a G-index of agreement
-
se.ave.cor.nonover()
- Computes the standard error for the average of two Pearson correlations with no variables in common that have been estimated from the same sample
-
se.ave.cor.over()
- Computes the standard error for the average of two Pearson correlations with one variable in common that have been estimated from the same sample
-
se.ave.mean2.dep()
- Computes the standard error for the average of 2-group mean differences from two parallel measurement response variables in the same sample
-
se.biphi()
- Computes the standard error for a biserial-phi correlation
-
se.bscor()
- Computes the standard error for a biserial correlation
-
se.cohen()
- Computes the standard error for Cohen's d
-
se.cor()
- Computes the standard error for a Pearson or partial correlation
-
se.mean.ps()
- Computes the standard error for a paired-samples mean difference
-
se.mean2()
- Computes the standard error for a 2-group mean difference
-
se.meanratio.ps()
- Computes the standard error for a paired-samples log mean ratio
-
se.meanratio2()
- Computes the standard error for a 2-group log mean ratio
-
se.oddsratio()
- Computes the standard error for a log odds ratio
-
se.pbcor()
- Computes the standard error for a point-biserial correlation
-
se.prop.ps()
- Computes the estimate and standard error for a paired-samples proportion difference
-
se.prop2()
- Computes the estimate and standard error for a 2-group proportion difference
-
se.propratio.ps()
- Computes the estimate and standard error for a paired-samples log proportion ratio
-
se.propratio2()
- Computes the estimate and standard error for a 2-group log proportion ratio
-
se.semipart()
- Computes the standard error for a semipartial correlation
-
se.slope()
- Computes a slope and standard error
-
se.spear()
- Computes the standard error for a Spearman correlation
-
se.stdmean.ps()
- Computes the standard error for a paired-samples standardized mean difference
-
se.stdmean2()
- Computes the standard error for a 2-group standardized mean difference
-
se.tetra()
- Computes the standard error for a tetrachoric correlation approximation
-
cor.from.t()
- Computes a Pearson correlation between paired measurements from a paired-samples t statistic
-
meta.chitest()
- Computes a chi-square test of effect-size homogeneity
-
stdmean2.from.t()
- Computes Cohen's d from pooled-variance t statistic
-
table.from.odds()
- Computes the cell frequencies in a 2x2 table using the marginal proportions and odds ratio
-
table.from.phi()
- Computes the cell frequencies in a 2x2 table using the marginal proportions and phi correlation