Meta-regression analysis for paired-samples log mean ratios
Source:R/meta_model.R
meta.lm.meanratio.ps.Rd
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a paired-samples log mean ratio. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity. The exponentiated slope estimate for a predictor variable describes a multiplicative change in the mean ratio associated with a 1-unit increase in that predictor variable, controlling for all other predictor variables in the model.
Arguments
- alpha
alpha level for 1-alpha confidence
- m1
vector of estimated means for measurement 1
- m2
vector of estimated means for measurement 2
- sd1
vector of estimated SDs for measurement 1
- sd2
vector of estimated SDs for measurement 2
- cor
vector of estimated correlations for paired measurements
- n
vector of sample sizes
- X
matrix of predictor values
Value
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
Estimate - OLS estimate
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
exp(Estimate) - the exponentiated estimate
exp(LL) - lower limit of the exponentiated confidence interval
exp(UL) - upper limit of the exponentiated confidence interval
References
Bonett DG, Price RM (2020). “Confidence intervals for ratios of means and medians.” Journal of Educational and Behavioral Statistics, 45(6), 750–770. ISSN 1076-9986, doi:10.3102/1076998620934125 .
Examples
n <- c(65, 30, 29, 45, 50)
cor <- c(.87, .92, .85, .90, .88)
m1 <- c(20.1, 20.5, 19.3, 21.5, 19.4)
m2 <- c(10.4, 10.2, 8.5, 10.3, 7.8)
sd1 <- c(9.3, 9.9, 10.1, 10.5, 9.8)
sd2 <- c(7.8, 8.0, 8.4, 8.1, 8.7)
x1 <- c(2, 3, 3, 4, 4)
X <- matrix(x1, 5, 1)
meta.lm.meanratio.ps(.05, m1, m2, sd1, sd2, cor, n, X)
#> Estimate SE z p LL UL exp(Estimate)
#> b0 0.50957008 0.13000068 3.919749 0.000 0.254773424 0.7643667 1.664575
#> b1 0.07976238 0.04133414 1.929697 0.054 -0.001251047 0.1607758 1.083030
#> exp(LL) exp(UL)
#> b0 1.2901693 2.147634
#> b1 0.9987497 1.174422
# Should return:
# Estimate SE LL UL z p
# b0 0.50957008 0.13000068 0.254773424 0.7643667 3.919749 0.000
# b1 0.07976238 0.04133414 -0.001251047 0.1607758 1.929697 0.054
# exp(Estimate) exp(LL) exp(UL)
# b0 1.664575 1.2901693 2.147634
# b1 1.083030 0.9987497 1.174422