Confidence interval for a subgroup difference in average Pearson or partial correlations
Source:R/meta_comp.R
meta.sub.cor.Rd
Computes the estimate, standard error, and confidence interval for a difference in average Pearson or partial correlations for two mutually exclusive subgroups of studies. Each subgroup can have one or more studies. All of the correlations must be either Pearson correlations or partial correlations.
Value
Returns a matrix with three rows:
Row 1 - estimate for Set A
Row 2 - estimate for Set B
Row 3 - estimate for difference, Set A - Set B
The columns are:
Estimate - estimated average correlation or difference
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2008). “Meta-analytic interval estimation for bivariate correlations.” Psychological Methods, 13(3), 173–181. ISSN 1939-1463, doi:10.1037/a0012868 .
Examples
n <- c(55, 190, 65, 35)
cor <- c(.40, .65, .60, .45)
group <- c(1, 1, 2, 0)
meta.sub.cor(.05, n, cor, 0, group)
#> Estimate SE LL UL
#> Set A: 0.525 0.06195298 0.3932082 0.6356531
#> Set B: 0.600 0.08128008 0.4171458 0.7361686
#> Set A - Set B: -0.075 0.10219894 -0.2645019 0.1387283
# Should return:
# Estimate SE LL UL
# Set A: 0.525 0.06195298 0.3932082 0.6356531
# Set B: 0.600 0.08128008 0.4171458 0.7361686
# Set A - Set B: -0.075 0.10219894 -0.2645019 0.1387283