Skip to contents

This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a 2-group log mean ratio. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity. The exponentiated slope estimate for a predictor variable describes a multiplicative change in the mean ratio associated with a 1-unit increase in that predictor variable, controlling for all other predictor variables in the model.

Usage

meta.lm.meanratio2(alpha, m1, m2, sd1, sd2, n1, n2, X)

Arguments

alpha

alpha level for 1-alpha confidence

m1

vector of estimated means for group 1

m2

vector of estimated means for group 2

sd1

vector of estimated SDs for group 1

sd2

vector of estimated SDs for group 2

n1

vector of group 1 sample sizes

n2

vector of group 2 sample sizes

X

matrix of predictor values

Value

Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:

  • Estimate - OLS estimate

  • SE - standard error

  • z - z-value

  • p - p-value

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

  • exp(Estimate) - the exponentiated estimate

  • exp(LL) - lower limit of the exponentiated confidence interval

  • exp(UL) - upper limit of the exponentiated confidence interval

References

Bonett DG, Price RM (2020). “Confidence intervals for ratios of means and medians.” Journal of Educational and Behavioral Statistics, 45(6), 750–770. ISSN 1076-9986, doi:10.3102/1076998620934125 .

Examples

n1 <- c(65, 30, 29, 45, 50)
n2 <- c(67, 32, 31, 20, 52)
m1 <- c(31.1, 32.3, 31.9, 29.7, 33.0)
m2 <- c(34.1, 33.2, 30.6, 28.7, 26.5)
sd1 <- c(7.1, 8.1, 7.8, 6.8, 7.6)
sd2 <- c(7.8, 7.3, 7.5, 7.2, 6.8)
x1 <- c(4, 6, 7, 7, 8)
X <- matrix(x1, 5, 1)
meta.lm.meanratio2(.05, m1, m2, sd1, sd2, n1, n2, X)
#>       Estimate         SE         z p          LL          UL exp(Estimate)
#> b0 -0.40208954 0.09321976 -4.313351 0 -0.58479692 -0.21938216     0.6689208
#> b1  0.06831545 0.01484125  4.603078 0  0.03922712  0.09740377     1.0707030
#>     exp(LL)   exp(UL)
#> b0 0.557219 0.8030148
#> b1 1.040007 1.1023054

# Should return:
#       Estimate         SE          LL          UL         z p
# b0 -0.40208954 0.09321976 -0.58479692 -0.21938216 -4.313351 0
# b1  0.06831545 0.01484125  0.03922712  0.09740377  4.603078 0
#    exp(Estimate)  exp(LL)   exp(UL)
# b0     0.6689208 0.557219 0.8030148
# b1     1.0707030 1.040007 1.1023054