Confidence interval for an average mean ratio from paired-samples studies
Source:R/meta_ave.R
meta.ave.meanratio.ps.Rd
Computes the estimate, standard error, and confidence interval for a geometric average mean ratio from two or more paired-samples studies. A Satterthwaite adjustment to the degrees of freedom is used to improve the accuracy of the confidence interval for the average effect size. Equality of variances within or across studies is not assumed.
Arguments
- alpha
alpha level for 1-alpha confidence
- m1
vector of estimated means for measurement 1
- m2
vector of estimated means for measurement 2
- sd1
vector of estimated SDs for measurement 1
- sd2
vector of estimated SDs for measurement 2
- cor
vector of estimated correlations for paired measurements
- n
vector of sample sizes
- bystudy
logical to also return each study estimate (TRUE) or not
Value
Returns a matrix. The first row is the average estimate across all studies. If bystudy is TRUE, there is 1 additional row for each study. The matrix has the following columns:
Estimate - estimated effect size
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
exp(Estimate) - exponentiated estimate
exp(LL) - lower limit of the exponentiated confidence interval
exp(UL) - upper limit of the exponentiated confidence interval
df - degrees of freedom
References
Bonett DG, Price RM (2020). “Confidence intervals for ratios of means and medians.” Journal of Educational and Behavioral Statistics, 45(6), 750–770. ISSN 1076-9986, doi:10.3102/1076998620934125 .
Examples
m1 <- c(53, 60, 53, 57)
m2 <- c(55, 62, 58, 61)
sd1 <- c(4.1, 4.2, 4.5, 4.0)
sd2 <- c(4.2, 4.7, 4.9, 4.8)
cor <- c(.7, .7, .8, .85)
n <- c(30, 50, 30, 70)
meta.ave.meanratio.ps(.05, m1, m2, sd1, sd2, cor, n, bystudy = TRUE)
#> Estimate SE LL UL exp(Estimate) exp(LL)
#> Average -0.05695120 0.004350863 -0.06558008 -0.04832231 0.9446402 0.9365240
#> Study 1 -0.03704127 0.010871086 -0.05927514 -0.01480740 0.9636364 0.9424474
#> Study 2 -0.03278982 0.008021952 -0.04891054 -0.01666911 0.9677419 0.9522663
#> Study 3 -0.09015110 0.009779919 -0.11015328 -0.07014892 0.9137931 0.8956968
#> Study 4 -0.06782260 0.004970015 -0.07773750 -0.05790769 0.9344262 0.9252073
#> exp(UL) df
#> Average 0.9528266 103.0256
#> Study 1 0.9853017 29.0000
#> Study 2 0.9834691 49.0000
#> Study 3 0.9322550 29.0000
#> Study 4 0.9437371 69.0000
# Should return:
# Estimate SE LL UL
# Average -0.05695120 0.004350863 -0.06558008 -0.04832231
# Study 1 -0.03704127 0.010871086 -0.05927514 -0.01480740
# Study 2 -0.03278982 0.008021952 -0.04891054 -0.01666911
# Study 3 -0.09015110 0.009779919 -0.11015328 -0.07014892
# Study 4 -0.06782260 0.004970015 -0.07773750 -0.05790769
# exp(Estimate) exp(LL) exp(UL) df
# Average 0.9446402 0.9365240 0.9528266 103.0256
# Study 1 0.9636364 0.9424474 0.9853017 29.0000
# Study 2 0.9677419 0.9522663 0.9834691 49.0000
# Study 3 0.9137931 0.8956968 0.9322550 29.0000
# Study 4 0.9344262 0.9252073 0.9437371 69.0000